

AMDG
Lines in the Plane – Chapter 4
4.1: Detours & Midpoints

Ms. Kresovic

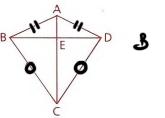
Objectives

After studying this section, you will be able to

- Use detours in proofs
- Apply the midpoint formula

Part One: Introduction

Detour Proofs

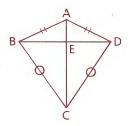

To solve some problems, it is necessary to prove more than one pair of triangles congruent. We call the proofs we use in such cases **detour proofs**.

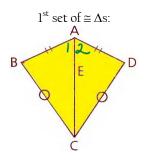
Analyze carefully the following example.

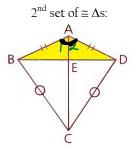
Example

Given: $\overline{AB} \cong \overline{AD}$, $\overline{BC} \cong \overline{CD}$

Prove: $\triangle ABE \cong \triangle ADE$






Notice that of the given information only $\overline{AB}\cong \overline{AD}$ seems to be usable. There does not seem to be enough information to prove that $\triangle ABE\cong \triangle ADE$. We must therefore prove something else first, taking a little detour to pick up the congruent parts we need.

Given: $\overline{AB} \cong \overline{AD}$, $\overline{BC} \cong \overline{CD}$

Prove: $\triangle ABE \cong \triangle ADE$

Statements	Reasons
$1. \overline{AB} \cong \overline{AD} \underset{\&}{\otimes} \overline{BC} \cong \overline{CD}$	1 GIVEN
2 AC = AC	2.
- 3 ACBA = ACDA	3. SSS (112)
4 4 4 2 42	4. CPCTC
5. AE YAE	5. Re)
$_{6.}$ $\triangle ABE \cong \triangle ADE$	6. SAS (145)

Whenever you are asked to prove that triangles or parts of triangles are congruent and you suspect that a detour may be needed, use the following procedure.

Procedure for Detour Proofs

- 1 Determine which triangles you must prove to be congruent to reach the required conclusion. (In the preceding example, these are △ABE and △ADE.)
- 2 Attempt to prove that these triangles are congruent. If you cannot do so for lack of enough given information, take a detour (steps 3-5 below).
- 3 Identify the parts that you must prove to be congruent to establish the congruence of the triangles. (Remember that there are many ways to prove that triangles are congruent. Consider them all.)
- 4 Find a pair of triangles that
 - (a) You can readily prove to be congruent
 - (b) Contain a pair of parts needed for the main proof (parts identified in step 3)
- 5 Prove that the triangles found in step 4 are congruent.
- 6 Use CPCTC and complete the proof planned in step 1.

The Midpoint Formula

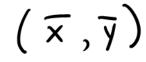
In some coordinate-geometry problems, you will need to locate the midpoint of a line segment. A method of doing so is suggested by the following example.

Example

On the number line below, the coordinate of A is 2 and the coordinate of B is 14. Find the coordinate of M, the midpoint of \overline{AB} .

There are several ways of solving this problem. One of these is the averaging process (the average of two numbers is equal to half their sum). We will use \mathbf{x}_m (read "x sub m") to represent the coordinate of M.

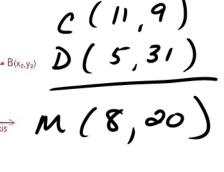
$$x_{m} = \frac{2 + 14}{2}$$


$$= \frac{16}{2} = 8$$
Check: AM = 8 - 2 = 6
MB = 14 - 8 = 6

Therefore, 8 is the coordinate of M.

We can apply the averaging process to develop a formula, called the *midpoint formula*, that can be used to find the coordinates of the midpoint of any segment in the coordinate plane. The proof of this theorem is left to you.

Theorem 22 If $A = (x_1, y_1)$ and $B = (x_2, y_2)$, then the midpoint $M = (x_m, y_m)$ of \overline{AB} can be found by using the midpoint formula:


$$M = (x_m, y_m) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

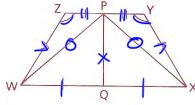
↑ y-axis

 $A(x_1,y_1)$

 $M(x_m, y_m)$

Fun applet: http://www.mathopenref.com/coordmidpoint.html

Ms. Kresovic


Part Two: Sample Problems

Problem 1

Given: \overrightarrow{PQ} bisects \overline{YZ} . Q is the midpt. of \overline{WX} . $\angle Y \cong \angle Z$, $\overline{WZ} \cong \overline{XY}$

Conclusion: $\angle WQP \cong \angle XQP$

Proof

DETOUR $\begin{array}{ccc}
1 & \overrightarrow{PQ} & \text{bisects } \overline{YZ}. \\
2 & \overline{ZP} & \overline{\boxtimes} & \overline{\boxtimes} \\
3 & \angle Z \cong \angle Y \\
4 & \overline{WZ} \cong \overline{XY}
\end{array}$

Statements

7 Q is the midpt. of \overline{WX} . **S** 8 $\overline{WQ} \cong \overline{QX}$

 $S 9 \overline{PQ} \cong \overline{PQ}$ $10 \Delta WQP \cong \Delta XQP$

11 $\angle WQP \cong \angle XQP$

Reasons

Given
 If a line bisects a segment, then it divides the segment into two ≅ segments.

3 Given

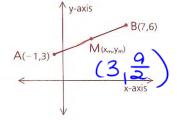
4 Given

5 SAS (2, 3, 4)

6 CPCTC

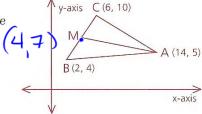
7 Given

3 mdpt≥≥sega


9 FUI 10 SSS (689) 55. H

Date

Problem 2


Find the coordinates of M, the midpoint of \overline{AB} .

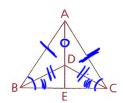
Solution

Problem 3

In $\triangle ABC$, find the coordinates of the point at which the median from A intersects \overline{BC} .

Solution

Since a median is drawn to a midpoint, use the midpoint formula to find the midpoint M of \overline{BC} .


Problem Set C

16 Given: $\overline{AB} \cong \overline{AC}$;

BD bisects ∠ABE.

 \overrightarrow{CD} bisects $\angle ACE$.

Conclusion: \overline{AE} bisects \overline{BC} .

Statements

Reasons

	A ***		-	7
- 7	ALB	~		#₹
	An	-	-	

2 BD bis∠ABE.

3 CD bis∠ACE.

 $4 \angle ABC \cong \angle ACB$

 $5 \angle DBE \cong \angle DCE$

 $6 \ \overline{BD} \cong \overline{CD}$

 $7 \overline{AD} \cong \overline{AD}$

 $8 \triangle ADB \cong \triangle ADC$

9 ∠BAD ≅ ∠CAD

 $10 \ \overline{AE} \cong \overline{AE}$

11 \triangle AEB \cong \triangle AEC

12 $\overline{\text{BE}} \cong \overline{\text{EC}}$

13 \overline{AE} bis \overline{BC} .

Casons

- 1 Given
- 2 (3) ven
- 3 (= 1)

4 ×× ⇒ 🛦 (1)

5 + (234)

 $6 \stackrel{\wedge}{\wedge} \stackrel{\wedge}{\wedge} \stackrel{\wedge}{\wedge} (5)$

7 Ref

8555(1,6,7)

9 CPCTC (8)

10 Ref

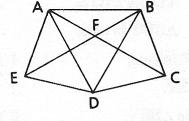
11 SAS

12 CACTC(II)

132 2 Seg > 613

11 $\overline{RQ} \cong \overline{SQ}$

12 $\triangle PRQ \cong \triangle PSQ$


13 ∠RPQ ≅ ∠SPQ

14 PQ bis∠RPS.

18 Given: $\overline{AD} \cong \overline{DB}$

 $\overline{AE} \cong \overline{BC}$

 $\overline{\mathrm{CD}}\cong\overline{\mathrm{ED}}$

Prove: $\triangle AFB$ is isos.

 $1 \overline{AD} \cong \overline{DB}, \overline{AE} \cong \overline{BC}$ 1

 $2 \overline{CD} \cong \overline{ED}$ 2

 $3 \triangle ADE \cong \triangle BDC$ 3

 $4 \angle ADE \cong \angle BDC$ 4

 $5 \angle ADB \cong \angle ADB$ 5

 $6 \angle EDB \cong \angle CDA$ 6

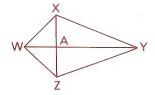
 $7 \triangle EDB \cong \triangle CDA$ 7

 $8 \overline{EB} \cong \overline{CA}$

 $9 \overline{AB} \cong \overline{AB}$ 9

10 $\triangle ABE \cong \triangle BAC$ 10

 $11 \angle ABF \cong \angle BAF$ 11


 $12 \overline{BF} \cong \overline{FA} \qquad 12$

13 △ABF is isos. 13

Ms. Kresovic

Adv Geo period ___ **Homework Problem Set A**

1 Given: $\overline{WX} \cong \overline{WZ}$, $\overline{XY} \cong \overline{ZY}$ Prove: $\triangle XAY \cong \triangle ZAY$

Statements

1	WX	\cong	\overline{WZ}

$$2 \overline{XY} \cong \overline{ZY}$$

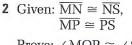
3 ___

$$4 \triangle WXY \cong \triangle WZY$$

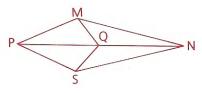
 $5 \angle XYW \cong \angle ZYW$

6 ___

$$7 \triangle XAY \cong \triangle ZAY$$


Reasons

- 1 Given
- 2 Given
- 3 Reflexive Property

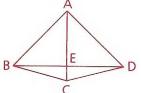

T .

5 ___

- 6 Reflexive Property
- 7

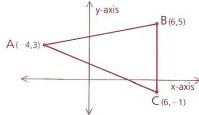
Prove: $\angle MQP \cong \angle SQP$

(With the Givens on the same line, 7 steps.)


Date

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

3 Given: A is equidistant from B and D (that is, AB = AD).

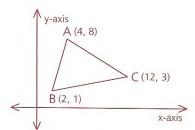

 \overrightarrow{AC} bisects $\angle BAD$.

Prove: AC bisects BD.

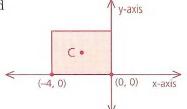
Stat	tements	Reasons
1.	A is =dist from B and D; $\overline{AB} \cong \overline{AD}$.	1.
2.	AC bis∠BAD.	2.
3.		3.
4.		4.
5.		5.
6.		6.
7.		7.

4 Find the coordinates of the midpoint of each side of $\triangle ABC$.

Make sure you communicate to the reader what you are doing. Use subtitles or subheadings, like this:


Mdpt AB

Mdpt BC

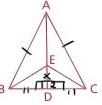

Mdpt CA

5 Find the coordinates of the point where the median from A intersects \overline{BC} .

 $Median \Rightarrow \underline{\hspace{1cm}}$

8 If the shaded square has center at C and an area of A_{\square} , find C and A_{\square} .

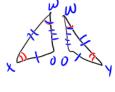
Find the area of the square

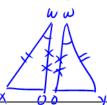

Find C

Date

Problem Set B

9 Given: $\frac{\triangle ABC}{\overline{AD}}$ is isosceles, with base $\overline{BC}.$


Prove: \triangle BEC is isosceles.



11 steps, each given on a separate line. Hint: Number the angles

	D 11
Statements	Reasons
1. $\overline{AD} \perp \overline{BC}$	1. Given
2. L18L2 NTLS	2. L>NLS
3. \triangle ABC is isos, base \overline{BC} .	3. Giver
4. AB = AC	4. 1505 A > 2 = 5d s
5. 40 = AO	5. pel
6. AABD \(\Delta AACD	6. HL (245)
7. 80 ≧CD	7. CPCTC
8. L1=L2	8. NT (S=) \(\subseteq \(\subseteq \)
9. EDEED	9. Rel
10. A DEB = 1 DEC	10 SAS
IL BE I CE 12/18/5/25	11. COCTC
10 Given: $\bigcirc O$, $\overline{WX} \cong \overline{WY}$	12, 2, 2012 > 1202V
Prove: WZ bisects XY.	$\mathcal{M}_{\mathcal{M}}$ $\mathcal{M}_{\mathcal{M}}$ $\mathcal{M}_{\mathcal{M}}$

C4-4	D
Statements	Reasons
1. ② O	1 GIVEN
2. Draw \overline{OX} and \overline{OY}	2. AUX
3. OX = OY	3. ○ ⇒ = rad
4. $\overline{WX} \cong \overline{WY}$	4. Given
5. OW = OW	5. De
6. △WXO ≅ △WYO	6. 555 ALT:
7. ZXWO = ZYWO ZWOX = ZWOY	7. CPCTC 7. ZXWO = ZYWO
8. 20x Z = 6 Z	8. <u>X</u> = <u>X</u>
9. ZWXZ~ZZWYZ	9. Add 9. Awx = Awy o
10. AWX Z YA WYZ	10. ASA 10. XB = YZ
11. 又てといて、	11. CPCTC 11. WZ bis VY
12. We bis XII	12. \(\subsection \) \(\subs
13.	13.
14.	14.

11 Given: $\overrightarrow{AD} \cong \overrightarrow{BC}$, $\overrightarrow{AF} \cong \overrightarrow{EC}$, $\overrightarrow{AF} \cong \overrightarrow{EC}$, $\overrightarrow{AF} \cong \overrightarrow{EC}$

Conclusion: $\overline{AB} \cong \overline{DC}$

B	B · C
Statements	Reasons
1. BD L AF and EC	1. GIVEN
2 LAFD&LCEB NTLS	2. 1 > retus (1)
$\overline{AD} \cong \overline{BC}, \overline{AF} \cong \overline{EC}$	3. GIVEN
4 AAFD YACEB	4 HL (233)
5 ∠ ADB ¥ ∠ CBD	5. CPCTC
6. BD \(\Sigma\) \(\Delta\) \(\Delta\)	6. Ref
7 AADB = ACBP	7SAS (356)
8. $\overrightarrow{AB} \cong \overrightarrow{DC}$	8. CPCTC
9.	9.
10.	10.
11.	11.

12 Given: $\frac{\overline{PR}}{\overline{QR}} \cong \overline{\overline{PU}}$, $\frac{\overline{QR}}{\overline{RS}} \cong \overline{\overline{UT}}$

Conclusion: $\angle 1 \cong \angle 2$

R	
Statements	Reasons
1. $\overline{PR} \cong \overline{PU}, \overline{QR} \cong \overline{QU}, \& \overline{RS} \cong \overline{UT}$	1 GIVEN
2. Draw PQ	2. Aux
3. PQ ≥ PQ	3. Ref
4. APRQ = A PUQ	4. SSS(11 3)
5. LPRQ ELPUQ	5. CPCTC
6. △ PRS ZA PUT	6. SAS '
7. LI ~ L2	7. CPCTC

NAME Adv Geo period ____

AMDG Lines in the Plane – Chapter 4 4.1: Detours & Midpoints

Ms. Kresovic

Date

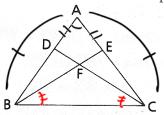
13 Given: $\overline{AB} \cong \overline{AC}$ $\overline{AD} \cong \overline{AE}$

Prove: \triangle FBC is isos.

 $1 \overline{AB} \cong \overline{AC}, \overline{AD} \cong \overline{AE}$

 $2 \angle A \cong \angle A$

 $3 \triangle BAE \cong \triangle CAD$


4 ∠ABE ≅ ∠ACD

5 ∠ABC ≅ ∠ACB

 $6 \angle FCB \cong \angle FBC$

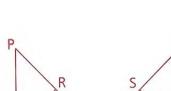
 $7 \overline{BF} \cong \overline{FC}$

8 ΔFBC is isos.

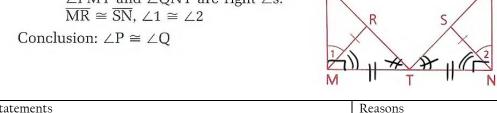
161VEN

2 Ref

3 SAS


4 CPCTC

5 ≯ ⇒ 🛆


6 Subtract (5-4)

7 (A) => XY

 $82 \le sds \Rightarrow 1sos \triangle$

14 Given: T is the midpt. of \overline{MN} . $\angle PMT \text{ and } \angle QNT \text{ are right } \angle s.$ $\overline{MR} \simeq \overline{SN} / 1 \simeq / 2$

Statements	Reasons
1 T mdpt of \overline{MN}	1. Given
2. MT ≅ TN	2. mdpt => = Sego
3. ∠PMT,∠QNT are rt∠s.	3. Given
_{4.} ∠PMT ≅ ∠QNT	4. rutus => = Ls
5. ∠1≅∠2	5. Given
6. ∠RMT ≅ ∠SNT	6. Subtract
$_{7.}$ $\overline{\text{MR}} \cong \overline{\text{SN}}$	7. Given
8 ARMTY ASUT	8. SAS
9. ZRTM = Z STN	9. CPCTC
10. APMT & DONT	10. ASA (9,2,4)
11 LP=10	
12.	12.
13.	13.
14.	14.

15 Given: \bigcirc O, \angle B \cong \angle C Prove: AO bisects BC.

11 steps, each given on a separate line

1. ZABE = ZACE
1. Given
2. AB = AC
2. AB = AC
3. OO
2. OO
3. OO
2. 5. AO = 20 5. Def 6. ΔABO≅ΔACO 6. SSS (2 45) ₹. ∠1 ≅ ∠2 ₹. CPCTC (6) 8. AE € AE 8. Ret