Date:

Name_____Adv Geo -

2.8: Vertical Angles

Objectives

After studying this section, you should be able to

- Recognize opposite rays
- Recognize vertical angles

Opposite Rays

 \overrightarrow{AB} and \overrightarrow{AC} are opposite rays.

 \overrightarrow{ED} and \overrightarrow{EF} are also opposite rays, as are \overrightarrow{EG} and \overrightarrow{EH} .

Definition

Two collinear rays that have a common endpoint and extend in different directions are called *opposite* rays.

Some pairs of rays that are not opposite rays are shown below.

 \overrightarrow{JK} and \overrightarrow{MO} are not parts of the same line. PT and \overrightarrow{RS} are not opposite, since they do not have a common endpoint.

Vertical Angles

Whenever two lines intersect, two pairs of *vertical angles* are formed.

Definition

Two angles are *vertical angles* if the rays forming the sides of one and the rays forming the sides of the other are opposite rays.

 $\angle 1$ and $\angle 2$ are vertical angles. $\angle 3$ and $\angle 4$ are vertical angles.

Are $\angle 3$ and $\angle 2$ vertical angles? How do vertical angles compare in size?

Theorem 18 Vertical angles are congruent.

Given: Diagram as shown

Prove: $\angle 5 \cong \angle 7$

We proved Theorem 18 in Section 2.4, sample problem 3.

Part Two: Sample Problems

Problem 1

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 3$

Proof

Statements	Reasons	
$ \begin{array}{ccc} 1 & \angle 2 \cong \angle 3 \\ 2 & \angle 1 \cong \angle 2 \\ 3 & \angle 1 \cong \angle 3 \end{array} $	1 Given 2 3	

Problem 2

Given: $\angle O$ is comp. to $\angle 2$.

 $\angle J$ is comp. to $\angle 1$.

Conclusion: $\angle O \cong \angle J$

Proof

Statements	Reason

- 1 \angle O is comp. to \angle 2. 2 $\angle J$ is comp. to $\angle 1$.
- $3 \angle 1 \cong \angle 2$
- $4 \angle 0 \cong \angle J$
- 1 Given 2 Given
- 3
- 4

Problem 3

Given:
$$m\angle 4 = 2x + 5$$
,

$$m \angle 5 = x + 30$$

Find: m∠4

Solution

$$2x + 5 = x + 30$$

$$x = 25$$

Therefore, $m\angle 4 = 2(25) + 5$, or 55.

Name_____Adv Geo - _____

2.8: Vertical Angles

Ms. Kresovic Date: ____

Problem 4

Given: $\angle 4 \cong \angle 6$

Prove: $\angle 5 \cong \angle 6$

Problem 5

Given: \overrightarrow{GD} bisects $\angle CBE$.

Conclusion: $\angle 1 \cong \angle 2$

AMDG

Problem 6

Angles 4, 5, and 6 are in the ratio 2:5:3. Find the measure of each angle.

Problem 7

If a pair of vertical angles are supp., what can we conclude about the angles?

Date:

Homework

5 Given: $\angle 1 \cong \angle 4$ Conclusion: $\angle 2 \cong \angle 3$

Statements	Reasons
1. ∠1 ≅ ∠4	1.
 2. ∠1 ≅ ∠2 & 3. ∠4 ≅ ∠3 	2.
4. ∠2 ≅ ∠3	3.

6 Given: $\overline{FH} \cong \overline{GJ}$ Prove: $\overline{FG} \cong \overline{HJ}$

7 Is this possible?

11 Given: \overrightarrow{GD} bisects $\angle CBE$. Conclusion: $\angle 1 \cong \angle 2$

12 Angles 4, 5, and 6 are in the ratio 2:5:3. Find the measure of each angle.

15 Find m∠1.

