Name
Ms. Kresovic
Adv Geo Period
W 4 Sep 2013
Objectives
After studying this section, you will be able to

- Identify midpoints and bisectors of segments
- Identify trisection points and trisectors of segments
- Identify angle bisectors
- Identify angle trisectors

Midpoints and Bisectors of Segments

We shall often work with segments that are divided in half.

Definition A point (or segment, ray, or line) that divides a segment into two congruent segments bisects the segment. The bisection point is called the midpoint of the segment.

Why X a midpoint?
Why isn't Y a midpoint?
How many midpoints does $\overline{\mathrm{PQ}}$ have?
How many bisectors could $\overline{\mathrm{PQ}}$ have?

Example If $\overline{\mathrm{OK}} \cong \overline{\mathrm{KP}}$, what conclusions can we draw?
Conclusions:
$\underset{ }{\mathrm{K}}$ is the midpoint of $\overline{\mathrm{OP}}$.
$\overleftrightarrow{\mathrm{JM}}$ is a bisector of $\overline{\mathrm{OP}}$.
Point K bisects $\overline{\mathrm{OP}}$.

Constructing a segment bisector. The bisector will intersect the segment at the midpoint.

- Set the distance between the spike and the pencil to be greater than $1 / 2$ the segment, but smaller than the segment itself. Do not adjust the compass after this.
- Place the spike at one segment endpoint. Mark an arc above and below the segment where you believe the midpoint is. Repeat from the other endpoint. Your construction should look similar to this:

- Connect the points found by the intersecting arcs. This line is the bisector. The point of intersection between the bisector and the segment is the midpoint.

Trisection Points and Trisecting a Segment

A segment divided into three congruent parts is said to be trisected.
Definition Two points (or segments, rays, or lines) that divide a segment into three congruent segments trisect the segment. The two points at which the segment is divided are called the trisection points of the segment.

Again, only segments have trisection points; rays and lines do not have trisection points.

Example If $\overline{\mathrm{AR}} \cong \overline{\mathrm{RS}} \cong \overline{\mathrm{SC}}$, what conclusions can we draw?

Conclusions:

\underline{R} and S are trisection points of $\overline{\mathrm{AC}}$.

$\overline{\mathrm{AC}}$ is trisected by R and S .

Constructing a segment trisector. The trisector will intersect the segment at the trisection points.

- Given a segment (like $\overline{A B}$ below) draw a random segment or ray (like $\overline{A C}$ below) from an endpoint of the given segment.
- Adjust the compass. Set the distance between the spike and the pencil to be less than $1 / 3$ of the random segment (that is (like $\overline{A C}$ above). Do not adjust the compass after this.
- You are dividing $\overline{A B}$ into 3 congruent parts. (There are many ways to divide a segment. I will use Euclid's method.) You will need 3 arcs on $\overline{A C}$ which locate 3 equidistant points. To find those points, place the spike of the compass at the vertex of the angle. Mark and arc on $\overline{A C}$. Label that point D. Place the spike at D and mark another arc on $\overline{A C}$. Label that point E. Move the spike to E and make another arc. Label that point F. Your construction should look similar to this:

- Draw $\overline{F B}$.
- Copy $\angle A F B$ at E and D. Points $H \& G$ are the trisection points:

Name
Ms. Kresovic
Adv Geo Period
W 4 Sep 2013
Angle Bisectors
An angle, like a segment, can be bisected.
Definition A ray that divides an angle into two congruent angles bisects the angle. The dividing ray is called the bisector of the angle.

If $\angle \mathrm{ABD} \cong \angle \mathrm{DBC}$, then $\overrightarrow{\mathrm{BD}}$
(not $\overrightarrow{\mathrm{DB}}$) is the bisector of $\angle A B C$.

If $\angle \mathrm{NOP} \cong \angle P O R$ and $\overrightarrow{\mathrm{OQ}}$

$\overrightarrow{\mathrm{PO}})$ is the bisector of \angle NOR, and $\angle 1 \cong \angle 2$.

Constructing an angle bisector

- Adjust you compass to intersect both rays of the angle. Place the spike at A and draw the arc to find points B and C:

- You will probably need to adjust the compass distance now. You want to draw arcs that are equidistant with the spike at point B and point C. In other words, don't adjust the compass until both arcs are finished and you have found points $D \& E$.

Draw a ray with endpoint A that contains D. If constructed correctly, A, E, and D are collinear. This is the angle bisector.

Angle Trisectors

Two rays can divide an angle into three equal parts.

Definition Two rays that divide an angle into three congruent angles trisect the angle. The two dividing rays are called trisectors of the angle.

If $\angle \mathrm{ABC} \cong \angle \mathrm{CBD} \cong \angle \mathrm{DBE}$,
then $\overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{BD}}$ trisect $\angle A B E$.

If $\overrightarrow{S V}$ and $\overrightarrow{S X}$ are trisectors
of $\angle T S Y$, then $\angle T S V \cong$
$\angle \mathrm{VSX} \cong \angle \mathrm{XSY}$.

We will not construct angle trisectors.

EXAMPLES

$\begin{array}{ll}\text { Problem } 1 \quad \text { The tick marks indicate that } \\ & \overline{\mathrm{RS}} \cong \overline{\mathrm{ST}} \text {. Is S the midpoint of } \overline{\mathrm{RT}} \text { ? }\end{array}$
Answer No, the points are not collinear.

Problem 2 If $\overrightarrow{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$, does $\overrightarrow{\mathrm{DB}}$ bisect $\angle \mathrm{ADC}$?

Answer No. We need more information.

Problem 3 If B and C trisect $\overline{\mathrm{AD}}$, do $\overrightarrow{\mathrm{EB}}$ and $\overrightarrow{\mathrm{EC}}$ trisect $\angle A E D$?

Answer No! It is true that $\overline{\mathrm{AB}} \cong \overline{\mathrm{BC}} \cong \overline{\mathrm{CD}}$, but the fact that the segment has been trisected does not mean that
 the angle has been trisected.

Problem 4
Given: $\overrightarrow{\mathrm{PS}}$ bisects $\angle \mathrm{RPO}$.
Prove: $\angle \mathrm{RPS} \cong \angle \mathrm{OPS}$

Proof

Statements	
Reasons $1 \overrightarrow{\mathrm{PS}}$ bisects $\angle \mathrm{RPO}$.1 Given $2 \angle \mathrm{RPS} \cong \angle$ OPS 2 If a ray bisects an angle, it divides the angle into two congruent angles.	

Name
Ms. Kresovic
Adv Geo Period
W 4 Sep 2013

1 Name the congruent segments.
a O is the midpoint of $\overline{\mathrm{CD}}$.
b $\overline{\text { SW }}$ bisects $\overline{\mathrm{XV}}$.

(-)
2 Name the congruent angles.
a $\overrightarrow{R O}$ bisects $\angle N R P$.

b $\overrightarrow{\mathrm{XT}}$ and $\overrightarrow{\mathrm{XV}}$ trisect $\angle \mathrm{SXW}$.

(-)
3 Name the angle bisector.
a

b $\mathrm{m} \angle \mathrm{POK}=\mathrm{m} \angle \mathrm{MOK}$

4 Find $\angle X T Z$ if $\overrightarrow{T Z}$ bisects $\angle X T Y$ and $\angle X T Y$ equals
a 60°
b $48^{\circ} 50^{\prime}$
c $36 \frac{1}{2}{ }^{\circ}$
d $85^{\circ} 74^{\prime}$

5 B and C trisect $\overline{\mathrm{AD}}$.
a Find the coordinates of B and C .

b Find AC.

6 Given: $\mathrm{OM}=\mathrm{x}+8$,
$M P=2 x-6$, $\mathrm{OP}=44$
Is M the midpoint of $\overline{\mathrm{OP}}$?

7 Given: $\mathrm{m} \angle \mathrm{FGJ}=3 \mathrm{x}-5$, $\xrightarrow{\mathrm{m}} \angle \mathrm{JGH}=x+27 ;$ $\overrightarrow{\mathrm{GJ}}$ bisects $\angle \mathrm{FGH}$.
Find: $\mathrm{m} \angle \mathrm{FG}$ J

Name
Ms. Kresovic
Adv Geo Period
W 4 Sep 2013
1.5 Division of Segments and Angles

8 B and C are trisection points of $\overline{\mathrm{AD}}$, and $\mathrm{AD}=12$.
a Find AB .
b Find AC.
c If $A B=x+3$, solve for x.
d If $\mathrm{AB}=\mathrm{x}+3$ and $\mathrm{AE}=3 \mathrm{x}+6$, find AE .
e What segment is C the midpoint of?
f Do $\overrightarrow{E B}$ and $\overrightarrow{E C}$ trisect $\angle A E D$?

9 Given: $\angle \mathrm{ABC}=90^{\circ}$, $\angle 1=(2 x+10)^{\circ}$, $\angle 2=(x+20)^{\circ}$, $\angle 3=(3 x)^{\circ}$
Has $\angle \mathrm{ABC}$ been trisected?

In problems 10 and 11, reason 2 in each proof is stated incorrectly. Supply the correct finall reason for each problem.

10 Given: $\angle \mathrm{DEG} \cong \angle \mathrm{FEG}$
Prove: $\overrightarrow{\mathrm{EG}}$ bisects $\angle \mathrm{DEF}$.

Statements
Reasons
$1 \underset{\mathrm{EG}}{\angle \mathrm{DEG} \cong \angle \mathrm{FEG}}$
1 Given
$2 \overrightarrow{\mathrm{EG}}$ bisects $\angle \mathrm{DEF}$.
2 If a ray divides an angle into two angles, the ray bisects the angle. (What is the correct reason?)

11 Given: $\overline{K J} \cong \overline{\mathrm{HJ}}$
Prove: J is the midpoint of $\overline{\mathrm{HK}}$.

Statements Reasons

$1 \overline{\mathrm{KJ}} \cong \overline{\mathrm{HJ}}$
2 J is the midpoint of $\overline{\mathrm{HK}}$.

1 Given
2 If a point is the midpoint of a segment, it divides the segment into two congruent segments. (What is the correct reason?)

Name
Ms. Kresovic
Adv Geo Period
W 4 Sep 2013

In problems 12-17, write a proof in two-column form.
12 Given: $\overrightarrow{W S}$ bisects $\angle R W P$.
Prove: $\angle \mathrm{RWS} \cong \angle \mathrm{PWS}$

Statements	Reasons
1. $\overrightarrow{\text { WS }}$ bisects \angle RWP.	1. Given
2. \angle RWS $\cong \angle$ PWS	2.

13 Given: $\overline{\mathrm{XY}} \cong \overline{\mathrm{YZ}}$
Prove: Y is the midpoint of $\overline{\mathrm{XZ}}$.

14 Given: $\angle \mathrm{AEB} \cong \angle \mathrm{BEC} \cong \angle \mathrm{CED}$
Conclusion: $\overrightarrow{\mathrm{EB}}$ and $\overrightarrow{\mathrm{EC}}$ trisect $\angle \mathrm{AED}$.

15 Given: $\angle 1 \cong \angle 2$
Conclusion: $\overrightarrow{\mathrm{HK}}$ bisects $\angle \mathrm{FH}$.

$18 \overrightarrow{\mathrm{OG}}$ and $\overrightarrow{\mathrm{OH}}$ divide straight angle $\mathrm{FO} J$ into three angles whose measures are in the ratio $4: 3: 2$. Find $m \angle$ FOG.

19 Given: $\overleftrightarrow{T P}$ bisects $\overline{\mathrm{VS}}$ and $\overline{\mathrm{MR}}$.
$\overline{\mathrm{VM}} \cong \overline{\mathrm{SR}}$,
$\mathrm{MP}=9, \mathrm{VT}=6$, perimeter of MRSV $=62$
Find: VM

21 a Find the value of x.
b Is Q the midpoint of $\overline{\mathrm{PR}}$?

