Ms. Kresovic

10.4 Secants and Tangents

Objectives

After studying this section, you will be able to

- Identify secant and tangent lines
- Identify secant and tangent segments
- Distinguish between two types of tangent circles
- Recognize common internal and common external tangents

Definition

SEC

Definition

A tangent is a line that intersects a circle at exactly one point. This point is called the point of tangency or point of contact.

Postulate A tangent line is perpendicular to the radius drawn

Postulate

If a line is perpendicular to a radius at its outer endpoint, then it is tangent to the circle. $\bot \Rightarrow RAD \cap TAN$

Definition

A tangent segment is the part of a tangent line between the point of contact and a point outside the circle.

Definition

A secant segment is the part of a secant line that joins a point outside the circle to the farther intersection point of the secant and the circle.

Definition

The external part of a secant segment is the part of a secant line that joins the outside point to the nearer intersection point.

Theorem 85

If two tangent segments are drawn to a circle from an external point, then those segments are congruent. (Two-Tangent Theorem)

Given: ⊙O;

PX and PY are tangent segments.

Prove: $\overline{PX} \cong \overline{PY}$

5. ox 2 oy

6. DOXP ZDOYP

7. PX 2 PY

J. O⇒ ZRADII (I)

6. HL (3,4,5

7 CACTC (6)

IS THE PROOF OF

Tangent Circles

Definition

Tangent circles are circles that intersect each other at exactly one point.

TODAY'S FOCUS

Common Tangents

PQ is the line of centers.

XY is a common internal tangent.

AB is a common external tangent.

Problem 1

Given: $\overline{X}\overline{Y}$ is a common internal tangent to 3 P and Q at X and Y. $\overline{\text{XS}}$ is tangent to $\bigcirc \text{P}$ at S. YT is tangent to OQ at T.

Conclusion: $\overline{XS} \cong \overline{YT}$

Proof

- 1 XS is tangent to ⊙P. YT is tangent to ⊙Q.
- 2 XY is tangent to ® P
- and Q. $3 \overline{XS} \cong \overline{XY}$
- $4 \ \overline{XY} \cong \overline{YT}$
- $5 \overline{XS} \cong \overline{YT}$

- 1 Given
- 2 Given

Problem 2

TP is tangent to circle O at T. The radius of circle O is 8 mm. Tangent segment TP is 6 mm long. Find the length of \overline{OP} .

Solution

Common-Tangent Procedure

- 1 Draw the segment joining the centers.
- 2 Draw the radii to the points of contact.
- 3 Through the center of the smaller circle, draw a line parallel to the common tangent.
- 4 Observe that this line will intersect the radius of the larger circle (extended if necessary) to form a rectangle and a right triangle.
- 5 Use the Pythagorean Theorem and properties of a rectangle.

Problem 3

A circle with a radius of 8 cm is externally tangent to a circle with a radius of 18 cm. Find the length of a common external tangent.

Solution

- O red ∩ tan ⇒ L
- @ Draw Rect, that is DRAW OP ! IAB
- 3) Draw Hypotenuse

SAUE FOR TOMORROW

Problem 4

A walk-around problem:

Given: Each side of quadrilateral

ABCD is tangent to the circle

$$AB = 10, BC = 15, AD = 18$$

Find: CD

$$Y=D-X$$

then $10-x+z=15$
 $z=x+5$

$$10 - y + \omega = 18$$

 $\omega = 8 + y$

lateral
the circle
$$AD = 18$$

$$AD =$$

$$CD = CG + GD$$

= $5+x + 18-x$
= $5+18$
= 23

Name		

Ms. Kresovic

Adv Geo – period ___

Date

Homework 10.4 Secants and Tangents

1 The radius of OA is 8 cm. Tangent segment \overline{BC} is 15 cm long. Find the length of \overline{AC} . = $\boxed{7}$

2 Concentric circles with radii 8 and 10 have center P.

 \overline{XY} is a tangent to the inner circle and is a chord of the outer circle.

Find \overline{XY} . (Hint: Draw \overline{PX} and \overline{PY} .)

4 Given: \overline{AC} is a diameter of $\bigcirc B$. Lines s and m are tangents to the

⊙ at A and C.

Conclusion: s | m

1. AC dia OB, S&m tan O@A&C 1. given a. ABLS & BCLM 2. tan > 1 3. SIIM 3. IFQUIS 1 to 3rd

5 \bigcirc P and \bigcirc R are internally tangent at O. P is at (8, 0) and R is at (19, 0).

a Find the coordinates of Q and S.
b Find the length of QR.

6 \overline{AB} and \overline{AC} are tangents to $\bigcirc O$, and OC = 5x. Find OC.

Skip, Savefor Friday

10 OP is tangent to each side of ABCD.

AB = 20, BC = 11, and DC = 14. Let

AQ = x and find AD.

3. PQ IRS

11 a Find the radius of OP.

b Find the slope of the tangent to ⊙P at point Q.

12 Two concentric circles have radii 3 and 7. Find, to the nearest hundredth, the length of a chord of the larger circle that is tangent to the smaller circle. (See problem 2 for a diagram.)

Thursday's homework Stops HERE

- a Find the length of a common external tangent. (Hint: Use the common-tangent procedure.)
- **b** Do the circles intersect?

d>15≥no∩

15 Given: PT is tangent to @ Q and R at

Conclusion:
$$\frac{PQ}{PR} = \frac{SQ}{TR}$$

- AS. LPZZP G. APSQ~APTR
 - 7. PQ/PR = SQ/TR

- 1. Given
- 2. tan⇒⊥
- 3 1 ⇒ MLS 4. MLS ⇒ = CS 5. MJ 6. AA ~ (45)

 - 7. 个公> corr sods prop.

$$AB = 8$$
, $BC = 13$, $AC = 11$

Find: The radii of the three @ (Hint: This is a walk-around problem.)

$$\partial a + 2b + \partial c = 8 + 13 + 11$$

 $\partial (a + b + c) = 32$

a+b+c=16

$$\frac{a+c=11}{8a+b+c=16}$$

$$11+b=16$$

$$b=5$$

- a Find the external part (PY) of the secant segment.
- b Find OP. 17

APRAQ tan OX

18 Given: △ABC is isosceles, with base BC.

Conclusion: BR ≈ RC

3. If you draw 2 tan from ext pt then they are = (2 tan thm)

same as 3

6. trans (485)

- 19 If two of the seven circles are chosen at random, what is the probability that the chosen pair are
 - a Internally tangent?
 - **b** Externally tangent?

BG

ΑB E9 AC ΔA 34 ΑF BG A4 21 TOTAL

$$\frac{9}{21} = \frac{3}{4}$$

